

European Union Network for the Implementation and Enforcement of Environmental Law

WASTE MANAGEMENT & CIRCULAR ECONOMY PROJECT IED IMPLEMENTATION PROJECT BATc on Waste Incineration: practical tools

Self-Monitoring Plan for WI plants and Checklist for inspectors

Date of report: 31.12.2024 Report number: 2022(III)WG5

Funded by the European Union IMPEL is funded by a "FRAMEWORK PARTNERSHIP AGREEMENT" with European Commission DIRECTORATE-GENERAL FOR ENVIRONMENT - LIFE PROGRAMME (ENV.E.4/FPA/2022/001 – IMPEL)

Introduction to IMPEL

The European Union Network for the Implementation and Enforcement of Environmental Law (IMPEL) is an international non-profit association of the environmental authorities of the European Union (EU) Member States, and of other European authorities, namely from acceding and candidate countries of the EU and European Economic Area (EEA). The association is registered in Belgium and its legal seat is in Brussels, Belgium.

IMPEL was set up in 1992 as an informal Network of European regulators and authorities concerned with the implementation and enforcement of environmental law. The Network's objective is to create the necessary impetus in the European Community to make progress on ensuring a more effective application of environmental legislation. The core of the IMPEL activities concerns awareness raising, capacity building and exchange of information and experiences on implementation, enforcement and international enforcement collaboration as well as promoting and supporting the practicability and enforceability of European environmental legislation.

During the previous years IMPEL has developed into a considerable, widely known organisation, being mentioned in a number of EU legislative and policy documents, e.g. the 8th Environment Action Programme that guide European environmental policy until 2030, the EU Action Plan: "Towards a Zero Pollution for Air, Water and Soil" on Flagship 5 and the Recommendation on Minimum Criteria for Environmental Inspections.

The expertise and experience of the participants within IMPEL make the network uniquely qualified to work on both technical and regulatory aspects of EU environmental legislation.

Information on the IMPEL Network is also available through its website at: www.impel.eu

Title of the report:	Number report:
BATc on Waste Incineration: practical tools	2022(III)WG5
Project Manager/Authors:	Report adopted at IMPEL
Fabio Colonna and Romano Ruggeri (Italy)	General Assembly Meeting:
	Adopted by written procedure
WI Core Team João Paulo Resendes Fernandes Bettencourt da Silva (Portugal) Ben Freeman (UK)	on 20/03/2025
Hipólito Bilbao (Spain)	Total number of pages: 58
Mikel Neve (Spain)	Report: 1-9
	Annexes: 10-58

Executive Summary

BAT Conclusions on waste incineration have been recently implemented (after 4 years from BAT Conclusions issuing) and their relevant application in IED permits is a challenge for regulators. The need for practical guidance for permit writers and inspectors is widely felt.

The aim of the project has been to examine the implementation issues related to the 37 individual BAT Conclusions for the Waste Incineration sector, providing practical tools to the regulators.

Self-monitoring Plan (with associated Report) and Check list for inspectors have been produced to help inspectors and permit writers in setting monitoring provisions according to BATc and in the preparation phase of an inspection focussed on BAT proper implementation.

Disclaimer

This report is the result of a project within the IMPEL network. The content does not necessarily represent the view of the national administrations or the Commission.

Quotation

It shall be permissible to make quotations from an IMPEL Document which has already been available to the public on the IMPEL website, provided that their making is compatible with fair practice, and their extent does not exceed that justified by the purpose. Where use is made of works in accordance with Berne Convention, mention should be made of related IMPEL Document Name with giving publication link of the document on IMPEL Website. IMPEL has all rights under the Berne Convention.

TABLE OF CONTENTS

1.	SCOPE	5
1.1.	Self-Monitoring Plan and Self-Monitoring Report	5
1.	1.1. Preliminary conditions	5
1.	1.2. Who performs the monitoring plan	6
1.2.	Check list for inspectors	6
2.	STRUCTURE OF THE DOCUMENTS	7
2.1.	Self-Monitoring Plan and Self-Monitoring Report	7
2.	1.1. Self-Monitoring Plan (Annex 1)	7
2.	1.2. Self-Monitoring Report (Annex 2)	8
2.2.	Check list for inspectors (Annex 3)	8
ANN	IEX I. SELF-MONITORING PLAN	11
ANN	IEX II. SELF-MONITORING REPORT	28
ANN	IEX III. CHECK LIST FOR INSPECTORS	37

1. Scope

BAT Conclusions on waste incineration have been recently implemented (after 4 years from BAT Conclusions issuing) and their relevant application in IED permits is a challenge for regulators. The demand for practical guidance for regulators, permit writers, and inspectors is widely recognized. Under the joint umbrella of IMPEL's "Waste Management & Circular Economy" and "Supporting IED Implementation Project," the Waste Incineration subgroup has been running over the last three years (2022-2024). This project aims to address implementation issues related to the most critical BAT Conclusions for the waste incineration sector, providing practical tools to the regulators.

Self-monitoring Plan (with associated Report) and a Checklist for inspectors have been produced to help inspectors and permit writers in setting monitoring provisions according to BATc and in the preparation phase of an inspection focussed on BAT proper implementation.

1.1. Self-Monitoring Plan and Self-Monitoring Report

These documents aim to:

- Provide guidelines for drafting the Self-Monitoring Plan based on WI BATc provisions. For each item, the elements to be monitored by the operator are listed either as tables or provisions.
- Offer a template for a Self-Monitoring Report, synthesizing all data gathered by the operator during the "reference year" in compliance with BATc and permit requirements.

The documents include tables listing elements of the Self-Monitoring Report (data to be gathered and submitted to authorities annually, as per Article 55 of the IED). An example data sheet is provided in the Annexes as a template for the annual report. Data are often expressed in specific quantities, enabling easy comparisons with other waste incineration plants.

Non compliances and other communications related to non-compliance fall outside the scope of this document. Operators must notify authorities separately when such issues arise.

1.1.1. Preliminary conditions

To comply with the Monitoring Plan requirements, operators must implement an Environmental Management System (EMS) incorporating:

- A monitoring and measurement program.

- A Continuous Emission Monitoring System (CEMS) Management Manual, including an OTNOC management plan for air emissions.
- Waste stream management.
- A residues management plan that includes measures to minimize residue generation, optimise the reuse, regeneration, recycling of, and/or energy recovery from the residues, and ensure proper disposal of residues (waste).
- An evaluation of non compliances, implementation of corrective actions, and a review of their effectiveness.

The EMS is an internal document describing operations for:

- Data collection (e.g., raw material, energy, and water consumption) included in the annual Self-Monitoring Report.
- Monitoring campaigns for air, water, and waste.
- Sample handling and analysis (internal or external laboratories). If external, agreements must comply with Monitoring Plan provisions.

1.1.2. Who performs the monitoring plan

The plant operator is responsible for implementing the Monitoring Plan provisions. External laboratories or companies may carry out monitoring activities under preliminary agreements/contracts, following Monitoring Plan provisions (e.g., sampling procedures, analytical methods). Laboratories accredited under standard EN 17025 are preferred. The operator retains ultimate responsibility for executing the Monitoring Plan.

1.2. Check list for inspectors

This document provides:

- Guidelines for inspectors based on WI BATC provisions. Each item specifies the BATc to verify.
- A customizable on-site Checklist for Inspectors, which can be adjusted based on inspection focus (e.g., air emissions, energy, waste) or the overall scope of the inspection.

1.2.1 Preliminary Activities

Before conducting an on-site inspection, inspectors should:

- Analyze the permit, particularly in cases of "tailored permits."
- Review the operator's EMS, including waste stream management, the CEMS Management Manual including OTNOC, and corrective actions for non compliances.
- Identify critical points in the plant.

These steps enhance inspection effectiveness and focus. Annex 3 provides a proposed checklist template.

2. Structure of the documents

This chapter briefly describes the structure and rationale of the documents included in Annexes 1, 2, and 3.

2.1.Self-Monitoring Plan and Self-Monitoring Report

The Self-Monitoring Plan and Self-Monitoring Report were designed to be as schematic and time-efficient as possible.

2.1.1. Self-Monitoring Plan (Annex 1)

The main chapter of the Self-Monitoring Plan is titled "Parameters to Monitor." It consists of the following sections:

- Plant Information: Thermal Capacity, Operating Hours, and Lower Calorific Value (LCV) of waste.
- Incoming Waste and Waste Acceptance Procedures.
- Energy.
- Raw Materials and Auxiliary Fuels.
- Water Usage and Consumption.
- Emissions to Air.
- Emissions to Water.
- Waste management.

- Noise.

Each section contains two subsections:

- Provisions in the Self-Monitoring Plan: This subsection specifies the requirements for operators as outlined in the WI BAT or permit—essentially, "what the operator must do."
- Information to be Found in the Annual Self-Monitoring Report: This subsection details the type of data to be included in the annual report, describing "how the operator must implement the requirements."

For example, in the section on "Raw Materials and Auxiliary Fuels":

- Provision: "During the reference year, the operator shall monitor the consumption of raw materials and reagents (e.g., for the FGC and Wastewater Treatment plant) and auxiliary fuels."
- Information: Table 5 lists the elements to be monitored and reported in the Annual Self-Monitoring Report (Data Sheet - Table 5).

2.1.2. Self-Monitoring Report (Annex 2)

The Self-Monitoring Report is a template (provided as a datasheet) summarizing all data collected by the operator during the "reference year" according to the BATC and the permit.

The template contains 12 folders, each with tables corresponding to items in the Self-Monitoring Plan. These tables list the data elements required by authorities annually (pursuant to Article 55 of the IED). An example datasheet is included in Annex 2 for reference. Data are typically expressed in specific quantities to facilitate comparison with other WI plants.

2.2.Check list for inspectors (Annex 3)

The checklist for inspectors is based on WI BATC provisions. For each item, the corresponding BAT to be verified is listed.

In the first part of the checklist, general information such as permit number, permitted capacity (t/year) and types of waste received have to be indicated. The core of the checklist is the "BAT Implementation"; it is composed of the following sections:

- 1.1. Environmental management systems (BAT 1)
- 1.2. Monitoring (BATs 2-8)

- 1.3. General environmental and combustion performance (BATs 9-18)
- 1.4. Energy efficiency (BATs 19-20)
- 1.5. Emissions to air (BATs 21-31)
- 1.6. Emissions to water (BATs 32-34)
- 1.7. Material efficiency (BATs 35-36)
- 1.8. Noise (BAT 37)

The checklist also provides an on-site inspection template that can be adapted or simplified by the inspector, depending on factors such as the scope of the inspection (e.g., emissions to air, energy, or waste) or the overall focus and duration of the inspection.

Annexes

Annex I. Self-Monitoring Plan

Company: IED category: Permit number:

SELF MONITORING PLAN and SELF MONITORING REPORT

REFERENCE YEAR:

Parameters to monitor

Plant information: Thermal Capacity, Operating Hours and Lower Calorific Value (LCV) of waste

Provisions in the Self-monitoring Plan attached to the permit

During the reference year the operator shall

- record "operating hours" (while waste is burning): NOC and OTNOC
- determine the "average LCV during the year" of waste burnt through periodic sampling, using other methods e.g. monitoring of steam flow and other parameters together with knowledge of the boiler efficiency.

Information to be found in the annual Self-monitoring Report

Table 1 shows the elements to be monitored - and to be found in the annual Self-monitoring Report - (Data Sheet-Table 1)

Reference Year:	unit of		For each incineration line			Note
	measure		1	2		
Authorised Thermal Capacity	MW	Total				
Operating Hours (burning waste)	h/year	Total				
LCV range of waste burnt (permit)	kcal/kg					Information in the permit e.g. Min 1.911 - Max 3.344
Average LCV of waste during the year	kcal/kg					

 Table 1 – Thermal capacity Operating Hours and LCV of waste

Incoming waste and waste acceptance procedures

Preliminary condition

Waste acceptance procedures are part of EMS.

These procedures define the elements to be verified upon the delivery of the waste at the plant as well as the waste acceptance and rejection criteria. They may include waste sampling, inspection and analysis.

Waste acceptance procedures are risk-based considering, for example, the hazardous properties of the waste, the risks posed by the waste in terms of process safety, occupational safety and environmental impact, as well as the information provided by the previous waste holder(s)

Provisions in the Self-monitoring Plan attached to the permit

During the reference year the operator shall keep track of all wastes burnt in term of categories (Municipal Solid Waste - code 20, Clinical Waste - code 18 etc) and single code.

BAT 11 allows radioactivity detection to be applied on a risk basis; if applied the operator shall record the results of radioactivity monitoring.

Information to be found in the annual Self-monitoring Report

Table 2 shows the elements to be monitored – <u>and to be found in the annual Self-monitoring Report</u> – for type of waste (Data Sheet- Table 2).

Type of waste	Delivered Quantity (t/year)	% (on total burnt wastes)	Note
Municipal Solid Waste	Х	/	
Other non-hazardous waste	Х	Х	
Hazardous wood waste	Х	X	
Clinical waste	Х	Х	
Total burnt wastes		100%	

 Table 2 – Incoming waste for category

Table 3 shows the elements to be monitored - and to be found in the annual Self-monitoring Report - for each code of waste (Data Sheet- Table 3)

EWC (waste input)	Delivered Quantity (t/year)
X (e.g. 20.12.12)	x
х	x
х	x

Reference Year

 Table 3 – Incoming waste for single code

Energy

Provisions in the Self-monitoring Plan attached to the permit

If R1-formula is applicable and energy efficiency has been calculated during the reference year, the operator shall record

- calculation of energy efficiency according to "R1-formula" (ref: Directive 2008/98/EC and amendments)
- calculation of energy efficiency according to BAT 2 and 19 (BAT C) and to permit provisions.

Information to be found in the annual Self-monitoring Report

Table 4 shows the elements to be monitored - and to be found in the annual Self-monitoring Report (Data Sheet-Table 4)

Parameters	u.o.m.	Value	Note
Ep energy produced as heat or electricity	Gj or MWh	x	
Ef energy input to the system from fuels	Gj	x	
Ew energy contained in the treated waste	Gj	X	
Ei energy imported	Gj	x	
R1 value (Directive 2008/98/EC)	-	X (0-1)	Specify if CCF is applied (1,151)

 Table 4 – Energy efficiency according to "R1-formula"

Raw materials and auxiliary fuels

Provisions in the Self-monitoring Plan attached to the permit

During the reference year the operator shall monitor the consumption of raw materials/reagents (FGC and Wastewater Treatment plant) and of auxiliary fuels

Information to be found in the annual Self-monitoring Report

Table 5 shows the elements to be monitored - and to be found in the annual Self-monitoring Report (Data Sheet-Table 5)

Reagents	Specific consumption (Kg/t waste burnt)	Note
Sodium bicarbonate	Х	
Activated carbon	Х	
Ammonia/urea	х	
Lime	Х	

Table 5 – Reagents

Table 6 shows the elements to be monitored - <u>and to be found in the annual Self-monitoring Report</u> – for fuels which are secondary fuels other than waste (Data Sheet-Table 6).

Fuel	Annual consumption (m³/year)	Specific consumption (m ³ /t waste burnt)
Natural gas	Х	Х
Diesel	Х	Х

Table 6 – Fuels

Water usage/consumption

Provisions in the Self-monitoring Plan attached to the permit

During the reference year the operator shall monitor the consumption of water, its source and its usage in the process specifying – if applicable- the specific phase of the process in which water is used, and recirculation percentage.

Information to be found in the annual Self-monitoring Report

 Table 7 shows the elements to be monitored - and to be found in the annual Self-monitoring Report – for water usage (Data Sheet- Table 7)

Source	Reference Year	Usage	Annual consumption (m ³ /year)	Specific Annual consumption (m ³ /t waste burnt)	% recirculation
Example: Groundwater / Industrial water	х	Process (WI) Specify the specific phase of the process	Х	Х	If applicable
Groundwater / Industrial water	х	Domestic	Х		

Table 7 – Water usage

Emissions to air

Provisions in the Self-monitoring Plan attached to the permit

During the reference year the operator shall monitor each WI channelled emission according to the following Table 8 (*ref. BAT 4 and BATs 25-31*). Furthermore, operator shall

- implement its CEMS (Continuous Emission Monitoring System) Management Manual including OTNOC Management Plan
- carry out for each channelled emission of WI plant calibration activity *Quality Assurance Level 2* (QAL2) according to standard EN 14181 (AMS stands for Automated Measuring System: the continuous monitoring system installed by the operator).

If EN standards are not available, BAT is to use ISO, national or other international standards that ensure the provision of data of an equivalent scientific quality.

Table 8 is a proposal which can be modified or integrated with other parameters/ frequencies/standards as long as compliant with BATC provisions. Note that for some parameters the frequencies are different of those in table at BAT4 (WI BATC). Some ISO standards are proposed. List can be integrated with other parameters like PBDD/F

			ID Emission Type of measurement/ frequency			Standard Reference Method (SRM)	
	Parameter	E1	E	Continuous	Periodic	Standard (1)	for Quality Assurance EN 14181- QAL2
	со	х	х	х		AMS	EN 15058
se gas	CO ₂	х	х		Once every year	Calculated	
Combustion and greenhouse gas	Ammonia	х	х	Х		AMS	EN ISO 21877
	тос	x	x	х		AMS	EN 12619
	NO _x	x	x	х		AMS	EN 14792
	N ₂ O ⁽²⁾	x	x		Once every year	EN ISO 21258	
0	SO _x	x	x	х		AMS	EN 14791
2	Sb	x	x				
mercul	As	х	х				
except	ТІ	х	х				
lloids e	Cd	х	х		Once every 4 months	EN 14385	
Metals and metalloids except mercury	Cr	х	х				
	Cu	x	x				
Met	Ni	х	x				

	Parameter	l Emis	D ssion	Type of meas	surement/ frequency	Standard (1)	Standard Reference Method (SRM)
	Pb	x	х				
	Со	x	х		-		
	Se	x	х		-		
	Sn	x	х		-		
	Zn	x	х		-		
	V	x	х		-		
	Mn	x	х		-		
Dioxin	PCDD + PCDF	x	х	X ⁽⁵⁾	Once every 6 months	EN 1948	
s, PAH and	Benzo[a]pyrene	x	х		Once every 6 months	ISO 11338	
РСВ	DL - PCBs	x	х	X ^{(5) (6)}	Once every 6 months	EN 1948	
Mercu ry	Нg	x	x	X ⁽⁴⁾	(Once every 6 months)	EN 13211 - EN 14884	
Acids	нсі	x	х	x		AMS	EN 1911 - EN 16429
and Dust	HF	x	х	X ⁽³⁾	(Once every 6 months)	AMS	ISO 15713:2006
	Dust	х	х	х		AMS	EN 13284
	Oxygen content (%O2)	x	х	x		AMS	EN 14789
	Temperature	x	х	х		AMS	EN 16911
Flue gas parameters	Pressure	x	х	x		AMS	EN 16911
	Water vapour content	х	х	x		AMS	EN 14790
Flue ga	Flow	x	х	x		AMS	EN 16911

 Table 8 – Air monitoring parameters

(1) For AMS no specific standard is indicated; generic EN standards for continuous measurements are EN 15267-1, EN 15267-2, EN 15267-3 and EN 14181. EN standards – ISO if no EN standard is available - for periodic measurements are given in the table or in the footnotes.

(2) In case of incineration of waste in fluidised bed furnace or when SNCR is operated with urea. If continuous monitoring of N₂O is applied, the generic EN standards for continuous measurements apply.

(3) The continuous measurement of HF may be replaced by periodic measurements with a minimum frequency of once every six months if the HCl emission levels are proven to be sufficiently stable. No EN standard is available for the periodic measurement of HF.

(4) For plants incinerating wastes with a proven low and stable mercury content (e.g. mono streams of waste of a controlled composition), the continuous monitoring of emissions may be replaced by long-term sampling (no EN standard is available for long-term sampling of Hg) or periodic measurements with a minimum frequency of once every six months. In the latter case the relevant standard is EN 13211.

- (s) The monitoring does not apply if the emission levels are proven to be sufficiently stable.
- (e) The monitoring does not apply where the emissions of dioxin-like PCBs are proven to be less than 0,01 ng WHO-TEQ/Nm₃.

Information to be found in the annual Self-monitoring Report

Table 9 shows the elements to be monitored for each incineration line - <u>and to be found in the annual Self-</u> <u>monitoring Report</u> (Data Sheet Table 9) – for continuous parameters (Daily/half hourly average values and number of breaches)

EMISSIONS TO AIR- Continuous Parameters: Daily Average and half hourly Values (Reference Year)									
PARAMETERS	ELV	EMISSION PO	DINT (Ex: E1)	EMISSION POINT (Ex: E1)					
		Daily average values Number or % of H during year ⁽²⁾ breaches % ⁽³⁾		Half hourly Average values during	Number or % of breaches % ⁽³⁾				
		uuning year	breaches /	year ⁽²⁾	breaches //				
Dust									
СО									
тос									
HCI									
HF ⁽¹⁾									
SO ₂									
NO ₂									
NH ₃									
Mercury ⁽¹⁾									

Table 9 – Daily average and half hourly values and number of breaches

Table 10 shows the elements to be monitored for each incineration line - <u>and to be found in the annual Self-</u> <u>monitoring Report</u> (Data Sheet- Table 10) – for non-continuous parameters (Results of analysis during the reference year

EMISSIO	EMISSION TO AIR- Non Continuous Parameters: Analysis results (Reference Year)									
EMISSION POINT (Ex: E1)										
Parameter	ELV mg/Nm ³	Analysis n.1	Analysis n.2	Analysis n.3	Analysis n	N. of breaches				
Cd + Tl										
Hg										
Metals (Sb, As, Pb, Cr, Co,										
Cu, Mn, Ni, V) + Sn										
Zn										
(PCDD + PCDF) I-TEQ	[ng/m ³]									
РАН										
PCB-DL WHO-TEQ	[ng/m ³]									
PBDD/F	[ng/m ³]									

 Table 10 – Periodic measurements and number of breaches
 Periodic measurements
 Periodic measurements

Table 11 shows the elements to be monitored for each incineration line - <u>and to be found in the annual Self-</u><u>monitoring Report</u> (Data Sheet- Table 11) – for PCDDF and mercury long term monitoring if applied (Results of analysis during the reference year)

Emiss. n.	U.M.	Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dic	Annual Average
E1	[ng/m ³]													
	[ng/m ³]													

MERCURY

Emiss. n.	U.M.	Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dic	Annual Average
E1														

 Table 11 – PCDD/F and mercury long term monitoring results

 Table 12 shows the elements to be calculated for each incineration line - and to be found in the annual Selfmonitoring Report (Data Sheet- Table 12) - on total annual mass flows of each parameter.

Parameter	Annual mass flow	Emission factor
Dust	t/year	g/t of wastes burnt
тос	t/year	g/t of wastes burnt
HCI	t/year	g/t of wastes burnt
HF	t/year	g/t of wastes burnt
SO ₂	t/year	g/t of wastes burnt
NO ₂	t/year	g/t of wastes burnt
CO	t/year	g/t of wastes burnt
NH ₃	t/year	g/t of wastes burnt
Cd + Tl	t/year	mg/t of wastes burnt
Hg	t/year	mg/t of wastes burnt
Metals (Sb, As, Pb, Cr, Co, Cu, Mn, Ni, V) + Sn	kg/year	mg/t of wastes burnt
Zn	kg/year	mg/t of wastes burnt
(PCDD + PCDF)	g/year	ng/t of wastes burnt
РАН	g/year	ng/t of wastes burnt

Incineration line n...../ Emission n. ...

Table 12 – Emission Annual mass flows

Emissions to water

During the reference year the operator shall monitor each discharge according to the following Table 13 (*ref. BAT 6 and BAT 34*). Furthermore, operator shall

- implement its own sampling procedure describing how to collect 24-hour flow- proportional/time-proportional composite samples.
- implement its own calibration procedure of instruments for continuous measurement: flow, pH, temperature.

If EN standards are not available, BAT is to use ISO, national or other international standards that ensure the provision of data of an equivalent scientific quality.

Table 13 is a proposal which can be modified or integrated with other parameters/ frequencies/ standards as long as compliant with BATC provisions. For each discharge a table has to be completed. Some parameters are added in comparison to the list of BAT 34. Some ISO standards are proposed. Examples of Process/origin other than wet FGC are surface run-off water, cooling water, drainage water collected from the waste reception, handling and storage areas.

	Proc	Discharge: Dis 1 ess/Origin: wet F	GC (Example)	
Dir	-		y receiving water body	
Parameter (**)	to monitor	Type of mea	surement/ frequency	Standard
	(X)	Continuous	Periodic	
				EN 17075
Flow ^(*)	x	х		EN ISO 5167-6
				EN ISO 20456
	x	x		EN 17075
рН (*)	~	X		EN ISO 10523:2012
Temperature ^(*)	x	х		EN 17075
Conductivity		x		EN 17075
conductivity		X		EN 27888
Total suspended solids (TSS) (§) (*)	x		Once every day (2)	EN 872
Total organic carbon (TOC) $^{(5)}$ $^{(*)}$	x		Once every month	EN 1484
COD			Once every month	ISO 15705:2002
Al			Once every month	EN ISO 11855

Dire										
	to	Process/Origin: wet FGC (Example) Direct/indirect: if direct specify receiving water body								
Parameter (**)	monitor	Type of mea	surement/ frequency	Standard						
	(X)	Continuous	Periodic							
Ąs ^(*)	х			EN ISO 15586						
5b ^(*)	х			EN ISO 17294-1:2006						
3				EN ISO 17294-2:2016						
Cd	х									
Ĵr (*)	х									
Ēe										
VIn										
Mo ^(*)	х									
Hg (*)	х									
Ni ^(*)	х									
pb (*)	х									
Cu ^(*)	х									
õe										
Sn										
LI (_*)	х									
Zn ^(*)	х									
Sulphate (SO ₄ ²⁻)	х		Once every six months	EN 10304-1						
				EN ISO 10304-1						
Chloride (Cl ⁻)	х		Once every six months	EN ISO 10304-4						
				EN 15682						
Fluoride (F ⁻)	x		Once every six months	EN ISO 10304-1						
	~			EN ISO 10304-4						
Fotal Phosphorus (P)			Once every six months	EN ISO 15681-1						
			Since every six monulis	EN ISO 15681-2						

	ID Discharge: Dis 1 (Example)								
Process/Origin: wet FGC (Example) Direct/indirect: if direct specify receiving water body									
Parameter ^(**)	to monitor	Type of mea	Standard						
	(X)	Continuous	Periodic						
Ammonium-nitrogen (NH4-N)	x		Once every six months	EN ISO 11732					
				EN ISO 14911					
				EN 10304-1					
Total Nitrogen (N)	x		Once every six months	EN 10304-3					
				EN 10304-4					
Hydrocarbon Oil Index (HOI)	x		Once every six months	EN ISO 9377-2					
Phenols	x		Once every six months	EN ISO 14402					
РАН	х		Once every six months	EN ISO 17993					
PCDD-DF (*)	x		Once every month ⁽¹⁾						

 Table 13 – Water monitoring parameters

(§) Monitoring is mandatory for wet FGC in case of direct discharge to a receiving water body (BAT34)

(*) Monitoring is mandatory for wet FGC in case of direct or indirect discharge (BAT34)

(1) The monitoring frequency may be at least once every six months if the emissions are proven to be sufficiently stable.

(2) The daily 24-hour flow-proportional composite sampling measurements may be substituted by daily spot sample measurements.

Information to be found in the annual Self-monitoring Report

Table 14 shows the elements to be calculated (from the results of analysis during the reference year)- <u>and to be</u> found in the annual Self-monitoring Report (Data Sheet- Table 14).

EMISS	EMISSIONS TO WATER FROM FGC (Reference Year)								
DISCHARGE POINT:									
Parameter	ELV mg/l	Annual average values	N. of breaches (1)						
TSS									
тос									
As									
Cd									
Cr									
Cu									
Hg									
Ni									
Pb									
Sb									
Tİ									
Zn									
(PCDD + PCDF)	[ng I-TEQ/I]								

 Table 14 – Water discharge annual average values

Residues (fly ashes from filters/heat exchanger and bottom ashes)

Provisions in the Self-monitoring Plan attached to the permit.

Monitoring includes residues sampling and analysis according EN standard – if available. Arrangements shall be done with the final treatment plant for ensuring the proper recover/disposal of residues. Sampling is performed according to the following table 15 and 16

Residues	Sampling	Parameters	Monitoring frequency
Bottom ashes	in the storage bunker	Unburnt substances in bottom ashes (see Table 16)	Once every three months (see Table 16)
Fly ashes from filters/heat exchanger	in silos/tank/big bag	Key substances (e.g. content of halogens and metals/metalloids)	every 6 months (or compliant with the requirements of final treatment plant)

 Table 15 – Sampling and analysis of residues

Parameter	Unit	Standard(s)	Monitoring frequency
		EN 14899 and either	
Loss on ignition (1)	Dry wt-%		Once every three months
Loss on Ignition		EN 15169 or EN 15935	
		EN 14899 and either	
Total organic carbon (1)(2)	Dry wt-%		Once every three months
		EN 13137 or EN 15936	

Table16 – Parameter Standard and frequency for unburnt substances in bottom ashes

(1) Either the loss on ignition or the total organic carbon is monitored.

(2) Elemental carbon (e.g. determined according to DIN 19539) may be subtracted from the measurement result.

Information to be found in the annual Self-monitoring Report

Table 17 shows un example of the elements to be monitored - and to be found in the annual Self-monitoringReport - for residues (Data Sheet- Table 17).

Residue	Waste code	Classification	Quantity (t/year)	Specific quantity (t/t wastes burnt)	Recovery/Disposal (R/D)	Waste treatment options
IBA	1901 12	MN				IBA aggregate (e.g. municipal); non-haz landfill (e.g. clinical)
(including when mixed with	10 01 15	MN				Non-haz landfill, fertiliser production (end-of-waste)
boiler ash or standalone co-	19 01 11*	МН				Haz waste landfill (e.g. haz-waste incinerator)
incinerator boiler ash)	10 01 14*	мн				Haz waste landfill (e.g. waste wood incinerator)
Boiler ash	1901 15*	МН				Haz waste landfill (e.g. municipal)
(standalone)	19 01 16	MN				Non-haz waste landfill
	19 01 07*	АН				Haz waste landfill, aggregate manufacture
APCR	10 01 18*	мн				Haz waste landfill, aggregate manufacture
	10 01 19	MN				Non-haz waste landfill

Table 17 – Residues

Noise

Provisions in the Self-monitoring Plan attached to the permit

In case of substantial changes (with a possible effect on noise emissions) during the reference year operator shall monitor the effects of these changes on noise emissions (considering the noise emissions at emitter and receiver).

Information to be found in the annual Self-monitoring Report

Noise emission Report (here attached)

ATTACHMENTS

Document (Example)	ID
Report on breaches (emissions to air)	
Noise report year 2024	
Quality assurance Report (CEMS)	

Annex II. Self-Monitoring Report

OPERATOR Information and contact

Company	
Address	
City	
Operator (name)	
Contact (mail/phone)	
Permit number	
IED code	
Other IED codes	

Self monitorng reference year:

PLANT INFORMATION

Table 1 – Thermal Capacity, Operating Hours and Lower Calorific Value (LCV) of wast

REFERENCE YEAR:

Reference Year:	unit of		For ea	ch incineratio	on line	Note
Reference fear:	measure		1	2		Note
Authorised Thermal Capacity	MW	Total				
Operating Hours (burning waste)	h/year	Total				
LCV range of waste burnt (permit)	kcal/kg					Information in the permit e.g. Min 1.911 - Max 3.344
Average LCV of waste during the year	kcal/kg					

INCOMING WASTE

Table 2 – Incoming waste for category

Table 3 – Incoming waste for single code

REFERENCE YEAR:

Type of waste	Delivered Quantity (t/year)	% (on total burnt wastes)	Note
Municipal Solid Waste	х	/	
Other non- hazardous waste	х	х	
Hazardous wood waste	х	х	
Clinical waste	х	х	
Total burnt wastes		100%	

Code	Delivered Quantity (t/year)
X (e.g. 20.12.12)	Х
х	х
х	Х

Table 2 – Incoming waste for category

Table 3 – Incoming waste for single code

ENERGY Table 4 – Energy efficiency according to "R1-formula"

REFERENCE YEAR:

Parameters	u.o.m.	Value	Note
Ep energy produced as heat or electricity	Gj or MWh	х	
Ef energy input to the system from fuels	Gj	х	
Ew energy contained in the treated waste	Gj	x	
Ei energy imported	Gj	х	
R1 value (Directive 2008/98/EC)	-	X (0-1)	Specify if CCF is applied (1,151)

RAW MATERIALS AND AUXILIARY FUELS

Table 5 – Reagents

Table 6 – Fuels

REFERENCE YEAR:

Reagents	Specific consumption (Kg/t waste burnt)	Note
Sodium bicarbonate	Х	
Activated carbon	х	
Ammonia/urea	х	
Lime	Х	

Fuel	Annual consumption (m ³ /year)	Specific consumption (m ³ /t waste burnt)
Natural gas	Х	х
Diesel	Х	х

Table 5 – Reagents

Table 6 – Fuels

WATER USAGE Table 7 – Water usage

REFERENCE YEAR:

Source	Reference Year	Usage	Annual consumption (m³/year)	Specific Annual consumption (m³/t waste burnt)	% recirculation
Example:		Process (WI)			
Mains water / borehole water	Х	Specify the specific phase of the process	Х	Х	lf applicable
Mains water / borehole water	х	Domestic	х		

EMISSIONS TO AIR Table 9 – Daily average and hal hourly values and number of breaches

REFERENCE YEAR:

EMISSIONS TO AIR- Continuous Parameters: Daily Average and half hourly Values (Reference Year)							
PARAMETERS	ELV	EMISSION PO	DINT (Ex: E1)	EMISSION POINT (Ex: E1)			
		Daily average values during year ⁽²⁾	Number or % of breaches % ⁽³⁾	Half hourly Average values during year ⁽²⁾	Number or % of breaches % ⁽³⁾		
Dust							
со							
тос							
HCI							
HF ⁽¹⁾							
SO ₂							
NO ₂							
NH ₃							
Mercury ⁽¹⁾							

(1) if continuous monitoring is applied

(2) calculated on the basis of the average daily values (mg/Nm3) of the reference year

(3) for every breach Table of breaches has to be filled up

Table of breaches (Reference year:)								
EMISSION POINT DATE MEASUARED LAST of BREACH (i.e. CONCENTRATION daily or half-hourly ACTIONS during BREACH average) ACTIONS								

EMISSIONS TO AIR Table 10 – Periodic measurements

REFERENCE YEAR:

EMISSIC	EMISSION TO AIR- Non Continuous Parameters: Analysis results (Reference Year)					
		EMISSION P	OINT (Ex: E1)			
Parameter	ELV mg/Nm ³	Analysis n.1	Analysis n.2	Analysis n.3	Analysis n	N. of breaches
Cd + Tl						
Hg						
Metals (Sb, As, Pb, Cr, Co, Cu, Mn, Ni, V) + Sn						
Zn						
(PCDD + PCDF) I-TEQ	[ng/m ³]					
РАН						
PCB-DL WHO-TEQ	[ng/m³]					
PBDD/F	[ng/m ³]					

Table of breaches (Reference year:)									
EMISSION POINT	DATE	MEASUARED CONCENTRATION during BREACH	ACTIONS						

EMISSIONS TO AIR Table 11 – PCDD/F and Mercurry long term monitoring results

REFERENCE YEAR:

PCDD/F

Emiss. n.	U.M.	Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dic	Annual Average
E1	[ng/m ³]													
	[ng/m ³]													

Mercury

Emiss. n.	U.M.	Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dic	Annual Average
E1														

EMISSIONS TO AIR

Table 12 – Annual mass flows

REFERENCE YEAR:

Incineration line n..../ Emission n. ...

Parameter	Annual mass flow	Emission factor
Dust	t/year	g/t of wastes burnt
TOC	t/year	g/t of wastes burnt
HCI	t/year	g/t of wastes burnt
HF	t/year	g/t of wastes burnt
SO ₂	t/year	g/t of wastes burnt
NO ₂	t/year	g/t of wastes burnt
CO	t/year	g/t of wastes burnt
NH ₃	t/year	g/t of wastes burnt
Cd + Tl	t/year	mg/t of wastes burnt
Hg	t/year	mg/t of wastes burnt
Metals (Sb, As, Pb, Cr, Co,		mg/t of wastes burnt
Cu, Mn, Ni, V) + Sn	kg/year	
Zn	kg/year	mg/t of wastes burnt
(PCDD + PCDF)	g/year	ng/t of wastes burnt
РАН	g/year	ng/t of wastes burnt

EMISSIONS TO WATER

Table 14 – Annual average values and number of breaches

REFERENCE YEAR:

EMISSIONS TO WATER FROM FGC								
DISCHARGE POINT:								
Parameter	ELV mg/l	Annual average values	N. of breaches (1)					
TSS								
тос								
As								
Cd								
Cr								
Cu								
Hg								
Ni								
Pb								
Sb								
ті								
Zn								
(PCDD + PCDF)	[ng I-TEQ/I]							

(1) for every breach Table of breaches has to be filled up

DISCHARGES Table of breaches (Reference year:)							
DISCHARGE POINT	DATE	MEASUARED CONCENTRATION during BREACH	ACTIONS				

RESIDUES Table 17- Residues from incineration

REFERENCE YEAR:

Residue	Waste code	Classification	Quantity (t/year)	Specific quantity (t/t wastes burnt)	Recovery/Disposal (R/D)	Waste treatment options
IBA	1901 12	MN				IBA aggregate (e.g. municipal); non-haz landfill (e.g. clinical)
(including when mixed with	10 01 15	MN				Non-haz landfill, fertiliser production (end-of-waste)
	19 01 11*	МН				Haz waste landfill (e.g. haz-waste incinerator)
incinerator boiler ash)	10 01 14*	МН				Haz waste landfill (e.g. waste wood incinerator)
Boiler ash	1901 15*	МН				Haz waste landfill (e.g. municipal)
(standalone)	19 01 16	MN				Non-haz waste landfill
	19 01 07*	АН				Haz waste landfill, aggregate manufacture
APCR	10 01 18*	мн				Haz waste landfill, aggregate manufacture
	10 01 19	MN				Non-haz waste landfill

Annex III. Check list for inspectors

On-site inspection checklist

Waste incineration

Date:	Time:	
Lead Inspector :		
Other inspectors:		

Site			
Operator name:			
Installation name:			
Permit number:			
Expiry date:			

Plant features				
Type of incineration plant:				
Types of waste received:				
Types of waste generated:				
Activities carried out at the facility:				
Permitted capacity (t/year):				
Storage capacity:				
Product/waste:				
e.g. incoming waste, IBA and APCR				
Other products (e.g.fuel):				
Temporary storage:				

Air emissions (be completed for each emissions point to be checked)					
Point sources					
Emission source					
Emission point reference					
Emission point height					
Installed thermal input (LCV)					

Emission regime	
Fuel or waste	
Operating hours and fuel consumption logs	
Emissions treatment	
Monitoring plan	
Continuous monitoring	
Results reporting	

Maintenance and metrological control				
Maintenance plan				
Verification of the metrological control				
Meteorological data				

Various				
Noise				
Complaints				
Noise assessment				
Adoption of noise-reduction measures				

Waste transportation	
Incoming	
Outgoing	
Radioactive material detection	
Slag and bottom ash	
Monitoring	
Monitoring reporting	

	BAT Implementation		
1.9. Environmenta	I management systems	YES	NO
BAT 1	In order to improve the overall environmental performance, BAT is to elaborate and implement an environmental management system (EMS)		
	Incorporates all 28 features		
OBS./NOTES			
1.10. Monitoring		YES	NO
BAT 2	BAT is to determine either the gross electrical efficiency, the gross energy efficiency, or the boiler efficiency of the incineration plant as a whole or of all the relevant parts of the incineration plant.		
OBS.		•	•

BAT 3	BAT is to monitor given below.	BAT is to monitor key process parameters relevant for emissions to air and water including those given below.						
	Stream/Location			Parameter(s)		Monitoring		
					Continuous measurement			
	Combustion cham	ber	Temp	perature				
	Waste water from	wet FGC	Flow,	pH, temperature				
	Waste water from treatment plants	bottom ash	Flow,	pH, conductivity				
OBS.								
BAT 4	accordance with E	BAT is to monitor channelled emissions to air with at least the frequency given below and accordance with EN standards. If EN standards are not available, BAT is to use ISO, nationa other international standards that ensure the provision of data of an equivalent scientific quality.				to use ISO, national or		
	Substance/ Parameter	Process	5	Standard(s)	Minimum Monitoring frequency	g Associated		
	NO _x	Incineration of waste		Generic EN Standards	Continuous	BAT 29		
	NH ₃		of when ind/or	Generic EN Standards	Continuous	BAT 29		

	N ₂ O	Incineration of waste in fluidised bed furnace Incineration of waste when SNCR is operated with urea	EN 21258	Once every year	BAT 29	
	СО	Incineration of waste	Generic EN Standards	Continuous	BAT 29	
	SO ₂	Incineration of waste	Generic EN Standards	Continuous	BAT 27	
	HCI	Incineration of waste	Generic EN Standards	Continuous	BAT 27	
	HF	Incineration of waste	Generic EN Standards	Continuous	BAT 27	
	Dust	Bottom ash treatment	EN 13284-1		BAT 26	
		Incineration of waste	Generic EN standards and EN 13284-2	Continuous	BAT 25	

 r					
Metals and metalloids except mercury (As, Cd, Co, Cr, Cu, Mn, Ni, Pb, Tl, V)	Incineration of waste	EN 14385	Once every six months	BAT 25	
Hg	Incineration of waste	Generic EN standards and EN 14884	Continuous	BAT 31	
TVOC	Incineration of waste	Generic EN Standards	Continuous	BAT 30	
PBDD/F	Incineration of waste	No EN standard available	Once every six months	BAT 30	
PCDD/F	Incineration of waste	EN 1948-1, EN 1948- 2, EN 1948-3	Once every six months for short- term sampling	BAT 30	
		No EN standard available for long- term sampling, EN 1948-2, EN 1948- 3	Once every month for long- term sampling	BAT 30	
Dioxin-like PCB's	Incineration of waste	EN 1948-1, EN 1948- 2, EN 1948-4	Once every six months for short- term sampling	BAT 30	
		No EN standard available for long- term sampling, EN 1948-2, EN 1948- 4	Once every month for long- term sampling	BAT 30	

			No EN standard available	Once every year	BAT 30					
OBS.										
BAT 5	BAT is to appropr OTNOC.	BAT is to appropriately monitor channelled emissions to air from the incineration plant during OTNOC.								
OBS.										
BAT 6	frequency given bel is to use ISO, nat	BAT is to monitor emissions to water from FGC and/or bottom ash treatment with at least the frequency given below and in accordance with EN standards. If EN standards are not available, BAT is to use ISO, national or other international standards that ensure the provision of data of an equivalent scientific quality.								
	Substance/ Parameter	Process	Standard(s)	Minimum monitoring frequency	Monitoring associated with					
	Total organic carbon (TOC)	FGC	EN 1484	Once every month						
		Bottom ash treatment		Once every month						
	Total suspended solids (TSS)	FGC	EN 872	Once every day						
	solius (133)	Bottom ash treatment		Once every month	BAT 34					
	As	FGC	Various EN	Once every						
	Cd	FGC	 standards available (e.g. EN ISO 11885, EN 	month						
	Cr	FGC	ISO 15586 or EN							

						1	
Cu	FGC		ISO 17294-2)				
Мо	FGC						
Ni	FGC						
Pb	FGC			Once month	every		
	Bottom treatment	ash		Once month	every		
Sb	FGC			Once month	every		
TI	FGC			month			
Zn	FGC						
Hg	FGC		Various EN standards available (e.g. EN ISO 11885, EN ISO 15586 or EN ISO 17294-2)				
Ammonium- nitrogen (NH₄-N	Bottom treatment	ash	Various EN standards available (e.g. EN ISO 11732, EN ISO 14911)	Once month	every		
Chloride (Cl ⁻)	Bottom treatment	ash	Various EN standards available (e.g. EN ISO 10304-1, EN ISO 15682)	Once month	every		

		Bottom ash treatment	EN ISO 10	0304-1	Once ev month	ery		
	PCDD/F	FGC	No EN s available	5		six		
		Bottom ash treatment	avallable		months			
OBS.								
BAT 7		BAT is to monitor the content of unburnt substances in slags and bottom ashes at the incineration plant with at least the frequency given below and in accordance with EN standards.						
	Parameter	Standard(s)		3		Monitoring associated with		
	Loss on ignition		EN 14899 and either EN 15169 or EN 15935		every three	BAT 14		
	Total organic carbon	EN 14899 a EN 13137 or E						
OBS.								
BAT 8	For the incineration of hazardous waste containing POPs, BAT is to determine the POP content in the output streams (e.g. slags and bottom ashes, flue-gas, waste water) after the commissioning of the incineration plant and after each change that may significantly affect the POP content in the output streams.							
OBS.								
1.11. General environ	1.11. General environmental and combustion performance							
BAT 9	In order to improve the overall environmental performance of the incineration plant by waste stream management (see BAT 1), BAT is to use all of the techniques (a) to (c) given below, and, where relevant, also techniques (d), (e) and (f).							

	(a)	Determination of the types of waste that c	an be incinerated				
	(b)	Set-up and implementation of waste chara	Set-up and implementation of waste characterisation and pre-acceptance procedures				
	(c)	Set-up and implementation of waste acce	ptance procedures				
	(d)	Set-up and implementation of a waste trac	cking system and inventory				
	(e)	Waste segregation					
	(f)	Verification of waste compatibility prior to the mixing or blending of hazardous wastes					
OBS.				I			
BAT 10		In order to improve the overall environmental performance of the bottom ash treatment plant, BAT is to include output quality management features in the EMS (see BAT 1).					
OBS.				I			
BAT 11	the was	In order to improve the overall environmental performance of the incineration plant, BAT is to monitor the waste deliveries as part of the waste acceptance procedures (see BAT 9(c)) including, depending on the risk posed by the incoming waste, the elements given below.					
	Waste ty	/ре	Waste delivery monitoring				
		al solid waste and other non-hazardous	Radioactivity detection				
	waste		Weighing of the waste deliveries				
			Visual inspection				
			Periodic sampling of waste deliveries and analysis of key properties/substances (e.g. calorific value, content of halogens and metals/metalloids). For municipal solid waste, this involves separate unloading.				

Sewage sludge	Weighing of the waste deliveries (or measuring the flow if the sewage sludge is delivered via pipeline)
	Visual inspection, as far as technically possible
	Periodic sampling and analysis of key properties/substances (e. g. calorific value, content of water, ash and mercury)
Hazardous waste other than clinical waste	Radioactivity detection
	Weighing of the waste deliveries
	Visual inspection, as far as technically possible
	Control and comparison of individual waste deliveries with the declaration of the waste producer
	Sampling of the content of all bulk tankers and trailers
	Sampling of the content of packed waste (e.g. in drums, intermediate bulk containers (IBCs) or smaller packaging)
	Analysis of combustion parameters (including calorific value and flashpoint)
	Analysis of waste compatibility, to detect possible hazardous reactions upon blending or mixing of wastes, prior to storage (BAT 9 f)
	Analysis of key substances including POPs, halogens and sulphur, metals/metalloids

	Clinical	waste	Radioactivity detection			
			Weighing of the waste deliveries			
			Visual inspection of the packaging integrity			
OBS.						
BAT 12		In order to reduce the environmental risks associated with the reception, handling and storage of waste, BAT is to use both of the techniques given below.				
	(a)	Impermeable surfaces with an adequate	drainage infrastructure			
	(b)	Adequate waste storage capacity				
OBS.						
BAT 13		to reduce the environmental risk associate o use a combination of the techniques give	ed with the storage and handling of clinical waste, n below.			
	(a)	Automated or semi-automated waste har	ndling			
	(b)	Incineration of non-reusable sealed conta	ainers, if used			
	(c)	Cleaning and disinfection of reusable cor	ntainers, if used			
OBS.			· · · ·			
BAT 14	content	In order to improve the overall environmental performance of the incineration of waste, to reduce the content of unburnt substances in slags and bottom ashes, and to reduce emissions to air from the incineration of waste, BAT is to use an appropriate combination of the techniques given below.				
	(a)	Waste blending and mixing				
	(b)	Advanced control system				

	(c)	Optimisation of the incineration process						
OBS.								
BAT 15	emission settings,	order to improve the overall environmental performance of the incineration plant and to reduce hissions to air, BAT is to set up and implement procedures for the adjustment of the plant's ttings, e.g. through the advanced control system (see description in Section 2.1), as and when eded and practicable, based on the characterisation and control of the waste (see BAT 11).						
OBS.			·					
BAT 16	emission supply o	order to improve the overall environmental performance of the incineration plant and to reduce nissions to air, BAT is to set up and implement operational procedures (e.g. organisation of the pply chain, continuous rather than batch operation) to limit as far as practicable shutdown and art-up operations.						
OBS.		· · · · · · · · · · · · · · · · · · ·						
BAT 17	to ensur consider	In order to reduce emissions to air and, where relevant, to water from the incineration plant, BAT is to ensure that the FGC system and the waste water treatment plant are appropriately designed (e.g. considering the maximum flow rate and pollutant concentrations), operated within their design range, and maintained so as to ensure optimal availability.						
OBS.		· · · · · · · · · · · · · · · · · · ·						
BAT 18	where re a risk-ba	to reduce the frequency of the occurrence of OTNOC and to reduce emissions to air and, elevant, to water from the incineration plant during OTNOC, BAT is to set up and implement ased OTNOC management plan as part of the environmental management system (see BAT includes all of the following elements:						
	environr	ation of potential OTNOC (e.g. failure of equipment critical to the protection of the nent ('critical equipment')), of their root causes and of their potential consequences, and review and update of the list of identified OTNOC following the periodic assessment below;						
		ate design of critical equipment (e.g. compartmentalisation of the bag filter, techniques to the flue-gas and obviate the need to bypass the bag filter during start-up and shutdown,						

	set-up	and implementation of a preventive maintenance plan for critical equipment (see BAT 1(xii));			
	monito	oring and recording of emissions during OTNOC and associated circumstances (see BAT 5);			
		ic assessment of the emissions occurring during OTNOC (e.g. frequency of events, duration, nt of pollutants emitted) and implementation of corrective actions if necessary.			
OBS.				·	
1.12. Energy efficience	;y		YES	NO	
BAT 19	In orde boiler.	In order to increase the resource efficiency of the incineration plant, BAT is to use a heat recovery boiler.			
OBS.				·	
BAT 20		er to increase the energy efficiency of the incineration plant, BAT is to use an appropriate nation of the techniques given below.			
	(a)	Drying of sewage sludge			
	(b)	Reduction of the flue-gas flow			
	(c)	Minimisation of heat losses			
	(d)	Optimisation of the boiler design			
	(e)	Low-temperature flue-gas heat exchangers			
	(f)	High steam conditions			
	(g)	Cogeneration			
	(h)	Flue-gas condenser			
	(i)	Dry bottom ash handling			

OBS.			
1.13. Emissions to ai	r	YES	NO
BAT 21	In order to prevent or reduce diffuse emissions from the incineration plant, including odour emissions, BAT is to:		
	store solid and bulk pasty wastes that are odorous and/or prone to releasing volatile substances in enclosed buildings under controlled subatmospheric pressure and use the extracted air as combustion air for incineration or send it to another suitable abatement system in the case of a risk of explosion;		
	store liquid wastes in tanks under appropriate controlled pressure and duct the tank vents to the combustion air feed or to another suitable abatement system		
	control the risk of odour during complete shutdown periods when no incineration capacity is available, e.g. by: sending the vented or extracted air to an alternative abatement system, e.g. a wet scrubber, a fixed adsorption bed;		
	control the risk of odour during complete shutdown periods when no incineration capacity is available, e.g. by: minimising the amount of waste in storage, e.g. by interrupting, reducing or transferring waste deliveries, as a part of waste stream management (see BAT 9);		
	control the risk of odour during complete shutdown periods when no incineration capacity is available, e.g. by: storing waste in properly sealed bales.		
OBS.			
BAT 22	In order to prevent diffuse emissions of volatile compounds from the handling of gaseous and liquid wastes that are odorous and/or prone to releasing volatile substances at incineration plants, BAT is to introduce them into the furnace by direct feeding.		
OBS.		1	
BAT 23	In order to prevent or reduce diffuse dust emissions to air from the treatment of slags and bottom ashes, BAT is to include in the environmental management system (see BAT 1) the following diffuse dust emissions management features:		

	identification of the most relevant diffuse dust emission sources (e.g. using EN 15445);	
	definition and implementation of appropriate actions and techniques to prevent or reduce diffuse emissions over a given time frame.	
OBS.		
BAT 24	In order to prevent or reduce diffuse dust emissions to air from the treatment of slags and bottom ashes, BAT is to use an appropriate combination of the techniques given below.	
	(a) Enclose and cover equipment	
	(b) Limit height of discharge	
	(c) Protect stockpiles against prevailing winds	
	(d) Use water sprays	
	(e) Optimise moisture content	
	(f) Operate under subatmospheric pressure	
OBS.		·
BAT 25	In order to reduce channelled emissions to air of dust, metals and metalloids from the incineration of waste, BAT is to use one or a combination of the techniques given below.	
	(a) Bag filter	
	(b) Electrostatic precipitator	
	(c) Dry sorbent injection	
	(d) Wet scrubber	
	(e) Fixed- or moving-bed adsorption	

OBS.							
BAT 26	ashes	n order to reduce channelled dust emissions to air from the enclosed treatment of slags and bottom ashes with extraction of air (see BAT 24(f)), BAT is to treat the extracted air with a bag filter (see Section 2.2).					
OBS.							
BAT 27		n order to reduce channelled emissions of HCI, HF and SO2 to air from the incineration of waste, BAT is to use one or a combination of the techniques given below.					
	(a)	Wet scrubber					
	(b)	Semi-wet absorber					
	(c)	Dry sorbent injection					
	(d)	Direct desulphurisation					
	(e)	Boiler sorbent injection					
OBS.							
BAT 28	waste	er to reduce channelled peak emissions of HCI, HF and SO2 to air from the incineration of while limiting the consumption of reagents and the amount of residues generated from dry nt injection and semi-wet absorbers, BAT is to use technique (a) or both of the techniques below.					
	(a)	Optimised and automated reagent dosage					
	(b)	Recirculation of reagents					
OBS.							
BAT 29	the inc	er to reduce channelled NOX emissions to air while limiting the emissions of CO and N2O from cineration of waste and the emissions of NH3 from the use of SNCR and/or SCR, BAT is to use propriate combination of the techniques given below.					

(a)	Optimisation of the incineration process			
(b)	Flue-gas recirculation			
(c)	Selective non-catalytic reduction (SNCR)			
(d)	Selective catalytic reduction (SCR)			
(e)	Catalytic filter bags			
(f)	Optimisation of the SNCR/SCR design and operation			
(g)	Wet scrubber			
In order to reduce channelled emissions to air of organic compounds including PCDD/F and PCBs from the incineration of waste, BAT is to use techniques (a), (b), (c), (d), and one or a combination of techniques (e) to (i) given below.				
(a)	Optimisation of the incineration process			
(b)	Control of the waste feed			
(c)	On-line and off-line boiler cleaning			
(d)	Rapid flue-gas cooling			
(e)	Dry sorbent injection			
(f)	Fixed- or moving-bed adsorption			
(g)	SCR			
(h)	Catalytic filter bags			
	 (b) (c) (d) (e) (f) (g) In ord from the technic structure of tech	(b) Flue-gas recirculation (c) Selective non-catalytic reduction (SNCR) (d) Selective catalytic reduction (SCR) (e) Catalytic filter bags (f) Optimisation of the SNCR/SCR design and operation (g) Wet scrubber In order to reduce channelled emissions to air of organic compounds including PCDD/F and PCBs from the incineration of waste, BAT is to use techniques (a), (b), (c), (d), and one or a combination of technity (e) to (i) given below. (a) Optimisation of the incineration process (b) Control of the waste feed (c) On-line and off-line boiler cleaning (d) Rapid flue-gas cooling (e) Dry sorbent injection (f) Fixed- or moving-bed adsorption	(b) Flue-gas recirculation (c) Selective non-catalytic reduction (SNCR) (d) Selective catalytic reduction (SCR) (e) Catalytic filter bags (f) Optimisation of the SNCR/SCR design and operation (g) Wet scrubber In order to reduce channelled emissions to air of organic compounds including PCDD/F and PCBs from the incineration of waste, BAT is to use techniques (a), (b), (c), (d), and one or a combination of techniques (e) to (i) given below. (a) Optimisation of the incineration process (b) Control of the waste feed (c) On-line and off-line boiler cleaning (d) Rapid flue-gas cooling (e) Dry sorbent injection (f) Fixed- or moving-bed adsorption	

	(i)	Carbon sorbent in a wet scrubber		
OBS.			I	
BAT 31	In order to reduce channelled mercury emissions to air (including mercury emission peaks) from the incineration of waste, BAT is to use one or a combination of the techniques given below.			
	(a)	Wet scrubber (low pH)		
	(b)	Dry sorbent injection		
	(c)	Injection of special, highly reactive activated carbon		
	(d)	Boiler bromine addition		
	(e)	Fixed- or moving-bed adsorption		
OBS.		·		
1.14. Emissions to w	to water		YES	NO
BAT 32	In order to prevent the contamination of uncontaminated water, to reduce emissions to water, and to increase resource efficiency, BAT is to segregate waste water streams and to treat them separately, depending on their characteristics.			
OBS.			1	
BAT 33	In order to reduce water usage and to prevent or reduce the generation of waste water from the incineration plant, BAT is to use one or a combination of the techniques given below.			
	(a)	Waste-water-free FGC techniques		
	(b)	Injection of waste water from FGC		
	(c)	Water reuse/recycling		

	(d) Dry bottom ash handling				
OBS.					
BAT 34	In order to reduce emissions to water from FGC and/or from the storage and treatment of slags and bottom ashes, BAT is to use an appropriate combination of the techniques given below, and to use secondary techniques as close as possible to the source in order to avoid dilution.				
		Technique	Typical pollutants targeted		
	Primary techniques				
	(a)	Optimisation of the incineration process (see BAT 14) and/or of the FGC system (e.g. SNCR/SCR, see BAT 29(f))	Organic compounds including PCDD/F, ammonia/ammonium		
	Secondary techniques				
	Preliminary and primary treatment				
					_
1.15. Material efficier	ncy			YES	NO
BAT 35		er to increase resource efficiency, BAT is to esidues.	handle and treat bottom ashes separately from		
OBS.					

BAT 36	In order to increase resource efficiency for the treatment of slags and bottom ashes, BAT is to use an appropriate combination of the techniques given below based on a risk assessment depending on the hazardous properties of the slags and bottom ashes.		
OBS.			
1.16. Noise			NO
BAT 37	In order to prevent or, where that is not practicable, to reduce noise emissions, BAT is to use one or a combination of the techniques given below.		
OBS.			