

European Union Network for the Implementation and Enforcement of Environmental Law

IMPEL CAED Training Course

Training material from the Environmental Liability Directive (ELD) PILOT WORKSHOPS 2024-2025

Francesco Andreotti

Speakers of the CAED morning - Athens

Francesco Andreotti

ISPRA (Italian Institute for Environmental Protection and Research), Italy IMPEL CAED project manager

Daniele Montanaro

ISPRA (Italian Institute for **Environmental Protection and** Research), Italy IMPEL CAED deputy project manager

Aisling Ryan

EPA (Environmental Protection IMPEL CAED project member

Claudio Toscano

ERA (Environment and Resources Authority), Malta IMPEL CAED project member

Luciana Carotenuto

ISPRA (Italian Institute for **Environmental Protection and** Research), Italy

IMPEL CAED deputy project manager

Nick Bond

WERLA SR (Waste Enforcement Regional Lead Authorities), Ireland

IMPEL CAED project member

Speakers of the CAED morning - Bucharest

Francesco Andreotti

ISPRA (Italian Institute for Environmental Protection and Research), Italy IMPEL CAED project manager

Daniele Montanaro

ISPRA (Italian Institute for Environmental Protection and Research), Italy IMPEL CAED deputy project manager

Aisling Ryan

EPA (Environmental Protection Agency), Ireland IMPEL CAED project member

Claudio Toscano

ERA (Environment and Resources Authority), Malta IMPEL CAED project member

Luciana Carotenuto

ISPRA (Italian Institute for Environmental Protection and Research), Italy

IMPEL CAED deputy project manager

Nick Bond

WERLA SR (Waste Enforcement Regional Lead Authorities), Ireland

IMPEL CAED project member

IMPEL Criteria for the Assessment of Environmental Damage (CAED) Procedure:

Screening of ELD cases

SCOPE of CAED

CAEDScope m а g **e** s mm **e e**

- **Disparities** in the achievement of objectives
- Inefficiencies and delays in the adoption of preventive or remedial measures

Can environmental damages be ascertained and assessed **using a common and systematic approach**...to increase the probability or assure the polluter pays for environmental damage?

PILLARS OF THE ASSESSMENT UNDER ELD

1) ELD applicability and screening of

cases

3) Application of the Polluter pays principle

Verify occupational activity, regime of liability, natural resources, temporal scope, exceptions Determine Significance and guarantee measurability of the adverse effects

Determine causal link between the damage and the operator activities

WHAT ONE SHOULD DO TO...

1. <u>Screen</u> potential ELD cases?

of the adverse effects

2. Determine <u>clues</u> of environmental damages?

3. Determine <u>evidence</u> of environmental damages?

CAED project team has developed:

ELD concepts + CAED concepts

CLUES OF DAMAGE NCE COI PTS CES IMP SCREENIN PRESS CASES IRE NCE OF DAMAGE

PROCEDURE

CAED project proposed a NEW PROCEDURE

Potential

The screening of potential environmental damage and imminent threat of damage cases

ELD cases

DETERMINATION **OF CLUES**

The **determination** of clues for the identification of candidate environmental damage and imminent threat of damage cases

Candidate **ELD** cases

DETERMINATION **OF EVIDENCE**

The determination of evidence for the confirmation of environmental damage and imminent threat of damage cases

The three steps may or may not be conducted in a sequential manner

GENERAL PROCESS DIAGRAM

SCREENING PROCESS

Potential ELD cases

Non-ELD

cases

Examples of screening of severe environmental harms in non-ELD legislation and guidelines

Example of screening in Scottish guidance - Waters

Indicators of significant adverse effects include where there is a serious

impact on the water environment from pollution, abstraction or impoundment, for example:

- Significant visible pollution e.g. large oil slick
- Entry of toxic and persistent pollutants
- Threat to drinking water supply
- Significant biological impact, e.g. fishkill, damage to wetland
- Sediment contamination

Consider whether the impact is likely to be have an **appreciable spatial extent** (see table on the right for surface waters) **and be sustained for example in a sensitive waterbody** (e.g. upper catchment surface waters) **or a water body with low flushing rate** (loch, groundwater) **or result in an ongoing source of pollution** (e.g. contaminated river sediment).

Spatial Extent

Type of water body	High Ecological Status	Other ecological status			
River >0.5km	0.5km	1.5km			
Inland loch	5 % surface area	15% surface area			
Transitional water	0.5km ²	1.5km ²			
Coastal water	0.5km ²	1.5km ²			
Impoundments	Severe barrier to fish migration				

SEPA from the Schedule 4 of The Scotland River Basin District (Standards) Directions

Example of screening in French guidance - species, waters, land

«European scale of industrial accidents»

🧼 E		1	2	3	4	5	6
Environmental consequences		800000					000000
Env10	Quantity of wild animals killed, injured or rendered unfit for human consumption (t)	Q < 0,1	0,1 ≤ Q < 1	1 ≤ Q < 10	10 ≤ Q < 50	50 ≤ Q < 200	Q ≥ 200
Env11	Proportion P of rare or protected animal or vegetal species destroyed (or eliminated by biotope damage) in the zone of the accident	P < 0,1 %	0,1% ≤ P < 0,5%	0,5 % ≤ P < 2 %	2 % ≤ P < 10 %	10 % ≤ P < 50 %	P ≥ 50 %
Env12	Volume V of water polluted (in m ³) *	V < 1000	1000 ≤ V < 10 000	10 000 ≤ V < 0.1	0.1 Million ≤ V< 1 Million	1 Million ≤ V< 10 Million	$V \ge 10$ Million
Env13	Surface area S of soil or underground water surface requiring cleaning or specific decontamination (in ha)	0,1 ≤ S < 0,5	0,5 ≤ S < 2	2 ≤ S < 10	10 ≤ S < 50	50 ≤ S < 200	S ≥ 200
Env14	Length L of water channel requiring cleaning or specific decontamination (in km)	0,1≤ L < 0,5	0,5 ≤ L< 2	2 ≤ L< 10	10 ≤ L < 50	50 ≤ L< 200	L ≥ 200

* The volume is determined with the expression Q/C_{lim} where:

✓ Q is the quantity of substance released,

 \checkmark

C_{lim} is the maximal admissible concentration in the milieu concerned fixed by the European directives in effect.

https://www.aria.developpement-durable.gouv.fr/in-case-of-accident/european-scale-of-industrial-accidents/?lang=en

Example of screening in Latvian guidance

Determination of the significance of the damage caused to the environment in occasion for action in accidents and emergency situations

Importance in terms of environmental damage

Minor localized damage	1
Local damage (within one municipality)	2
Significant damage on a local scale (within two municipalities)	3
Regional scale (within several municipalities) damage	4
National and cross-border damage	5

Options for stopping damage to the environment

The spread of damage in the environment is controlled	1
The opportunities to stop environmental damage are great	2
The chances of stopping the damage to the environment are medium	3
The chances of stopping the damage to the environment are minimal	4
There is no way to stop the damage to the environment	5

The significance of the damage caused to the environment

Score	The number of points for the importance of damage to the environment	Description of the significance of the damage caused to the environment					
1	15 - 25	The damage to the environment is extremely significant					
2	9 - 14	The damage done to the environment is very significant					
3	4 - 8	The damage to the environment is significant					
4	1 - 3	The damage to the environment is insignificant					

FORMULA: Importance of environmental damage

(1-5) x Options for stopping environmental

damage (1-5) = Significance of environmental

damage (1-25).

CAED Screening ≈ US NRDA (Natural Resource Damage Assessments)

Oil Pollution Act of 1990, 2024 - 15 CFR Part 990 (up to date as of 1/25/2024)

Determination of jurisdiction

Upon learning of an incident, trustees must determine whether there is jurisdiction to pursue restoration under Oil Pollution Act (OPA).

Trustees must determine whether:

- Injuries have resulted, or are likely to result, from the incident;
- Response actions have not adequately addressed, or are not expected to address, the injuries resulting from the incident; and
- Feasible primary and/or compensatory restoration actions exist to address the potential injuries.

Trustees may collect and analyze the following types of data during the Preassessment Phase:

- Data reasonably expected to be necessary to make a determination of jurisdiction or a determination to conduct restoration planning;
- Ephemeral data

Determination on restoration planning

Data collection

TOOLKIT – PRACTICAL TABLES

Von-ELI

I. Screen potential ELD cases?

Check-list for screening potential ELD cases:

VIDEO on the SCREENING CHECK-LIST

https://www.youtube.com/watch?v=DL56S-zfsA4&t=147s

Get ready for the exercise no. 1

IMPEL CAED Project Procedure:

Clues of environmental damage

The three steps may or may not be conducted in a sequential manner

GENERAL PROCESS DIAGRAM

WHY CLUES?...

Your suspicion grows...

...that an environmental damage occurred...

...but you still haven't determined evidence of it...

Examples of clues of severe environmental harms in non-ELD legislation and guidelines

Example of clues in Irish legislation - Groundwater

- "Threshold values" have been established for pollutants that are causing a risk to groundwater bodies.
- Exceedance of a relevant threshold value at a representative monitoring point triggers further investigation to confirm whether the criteria for poor groundwater chemical status are being met.
- If the criteria for poor chemical status are being met by one or more of the test procedures in Schedule 7, then a body or a group of bodies of groundwater is classified as being at poor chemical status.
- Threshold values are expressed as annual arithmetic mean concentrations.
- For the drinking water test, further investigation includes an assessment of significant and sustained upward trends in concentration of the relevant pollutant at the monitoring point.

"SCHEDULE 5

Groundwater Threshold Values

		Threshold Value				
Parameter	Units	Column 1 Test: Assessment for the presence of saline or other intrusions	Column 2 Test: Assessment of adverse impacts of chemical inputs from groundwater on associated surface water bodies	Column 3 ² Test: Assessment of whether groundwater intended for human consumption in drinking water protected areas is impacted by pollutants and/or is showing a significant and sustained rise in pollutant levels	Column 4³ Test: Assessment of the general quality of groundwater in a groundwater body in terms of whether its ability to support human uses has been significantly impaired by pollution	Overall Threshold Value Range
Inorganic & Metals		1	1	1		
Electrical Conductivity	μS/cm @25°C	800	-	1875	1875	800 — 1875

Example of clues in Italian legislation - Land

Example of clues in Dutch legislation - Land

Soil Protection Act of 1987		Background value	Soil interven- tion value (IV)	IV indica- tive level (IL)	Soil human risk limit
	Substance	mg/kg ds	mg/kg us		mg/kg ds
	1. Metals				
	antimony (Sb)	0.8	15		15.7
	arsenic (As)	20	76		576
	barium (Ba)	190	920		9340
	beryllium (Be)	1.5	30	IL	233
	Boron (B)		7	а	1000
	cadmium (Cd)	0.6	13		28
	chromium (Cr)	55	180		2760
	cobalt (Co)	15	190		43

Example of clues in Portuguese Guidance – Surface water and Groundwater

- Conceptual methodology to determine whether a given occurrence or hazardous event on water resources leads to a substantial adverse effect on them
- Such situation can be measured and classified by the technical-scientific index for the clarification of illicit actions on water resources (I_{TC}).
- The methodology aims to define the effective outcome of a given occurrence or hazardous event resulting from actions likely to cause substantial adverse effects on surface water and/or groundwater
- When the I_{TC} expresses an unacceptable outcome for water resources, it means that the occurrence or hazardous event has resulted in substantial adverse effects on water that are considered to cause significant damage to surface water and/or groundwater resources

Technical-Scientific Index of illicit for water resources (I_{TC})

$$I_{tc} = \frac{P_{occurrence} \times Effect_{adv} \times P_{impair WR (SW or GW)}}{81} \times f_{add}$$

 Table 13: Prioritization of the technical-scientific index for the clarification of illicit actions on water resources (surface or groundwater)

l _c	Description				
l _{tc} ≥ 4	The event or hazardous occurrence determines an <u>unacceptable outcome</u> for the surface water and/or groundwater, and therefore can/should be considered as significant for water resources				
$I_{tc} < 4$	The event or hazardous occurrence determines an <u>intermediate to</u> acceptable outcome for water resources				

SCOPE - Substantial damage to surface water in the context of environmental crimes

CAED Clues determination ≈ US NRDA

Pre-Assessment Screen (PAS) phase The PAS is an evaluation process to discern whether Natural Resource Damage Assessment and Restoration (NRDAR) activities are warranted, with a reasonable probability of making a successful damages claim

The authority evaluates whether sufficient data exist, or could be attained at reasonable cost, to determine the extent of the injury and actions needed to restore the resources and compensate for interim loss of services

If additional data are needed to determine the extent of injury caused by a release of hazardous substances or oil spill, or if analyses are needed to calculate the cost of restoration or the value of the service loss, then the trustees should plan and implement an assessment of injury and damages. The major assessment steps are the assessment plan including a preliminary estimate of damages, injury determination, injury quantification, and damage determination, including preliminary restoration planning.

- 2. Determine clues of environmental damages? 3.
- Determine evidence of environmental damages?

Impact-State-Pressure-Driver (ISPD) Tables

OBJE	ECTIVE	INDICATORS		DESCRIPTION		EVALUATION			INTERIM JUDGEMENT	
OBJECTIVE		INDICATORS	DESCRIPTION	×	EVALUATION		ALUATION			INTERIM JUDGEMENT
OBJECTIV	OBJECTIVE INDICATOR				DESCRIPTION		EVALUATION		INTERIM JUDGEMENT	
OBJ	ECTIVE	INDICATOR		D		DESCRIPTION	E	EVALUATION		INTERIM JUDGEMENT

- **1.** Check-lists, decision-making flowcharts, and tables can offer guidance for ascertainment and assessment of environmental damages under ELD
- 2. The use of tables with pre-defined indicators/parameters can help in:
- ✓ Organizing data systematically, preventing information loss
- ✓ identifying investigative priorities
- ✓ aiding in interpretation of information/data for the case screening and the evaluation of adverse effects with a systematic approach
- ✓ collecting standardized data by different subjects
- \checkmark establishing causal links with responsible activities

Impact-State-Pressure-Driver Tables (ISPD Tables)

Decide

Check

UDICATORS DESCRIPTION

Collect, manage and order data and information

TOOLKIT

PROCEDURE FOR CLUES DETERMINATION

1. ISPD TABLES OF INDICATORS AND GROUPS OF INDICATORS (OBJECTIVES)

1. ISPD TABLES OF INDICATORS AND GROUPS OF INDICATORS (OBJECTIVES)

VIDEO on the ISPD Tables

https://www.youtube.com/watch?v=6JvVgCF8DDI

Get ready for the exercise no. 2

IMPEL CAED Project Procedure:

Evidence of environmental damage

The three steps may or may not be conducted in a sequential manner

GENERAL PROCESS DIAGRAM

Y

EVIDENCE

CLUE

CAED Evidence determination ≈ US NRDA

Injury assessment— Injury determination phase

Determining injury – if the definition of injury has been met [...]; and [...] an injury to a natural resource or impairment of a natural resource service has occurred as a result of response actions or a substantial threat of a discharge of oil

Selection of injuries to include in the assessment When selecting potential injuries to assess, trustees should consider factors such as:

(1) The natural resources and services of concern;

(2) The procedures available to evaluate and quantify injury, and associated time and cost requirements;

(3) The evidence indicating exposure;

(4) The pathway from the incident to the natural resource and/or service of concern;

(5) The adverse change or impairment that constitutes injury;

(6) The evidence indicating injury;

(7) The mechanism by which injury occurred;

(8) The potential degree, and spatial and temporal extent of the injury;

(9) The potential natural recovery period; and

(10) The kinds of primary and/or compensatory restoration actions that are feasible.

Get ready for the exercise no. 3

REFERENCES

- ✓ IMPEL CAED project https://www.impel.eu/it/projects/criteria-for-the-assessment-of-the-environmental-damagecaed
- ✓ Schedule 4 of The Scotland River Basin District (Standards) Directions. UK- <u>https://www.gov.scot/publications/scotland-river-basin-district-standards-directions-2014/</u>
- European Scale of Industrial Accidents, France <u>https://www.aria.developpement-durable.gouv.fr/in-case-of-accident/european-scale-of-industrial-accidents/?lang=en</u>
- ✓ Methodological instructions for action in accidents and emergency situations, page 13, par. 12 "Determination of the significance of the damage caused to the environment". State Environmental Service, Latvia.
- ✓ US NRDA (Oil Pollution Act of 1990, 2024 15 CFR Part 990 (up to date as of 1/25/2024)). US <u>https://www.ecfr.gov/current/title-15/subtitle-B/chapter-IX/subchapter-E/part-990</u>
- STATUTORY INSTRUMENTS No. 9 of 2010, amended S.I. No. 366 of 2016. Ireland https://www.irishstatutebook.ie/eli/2010/si/9/made/en/pdf
- ✓ Italian Environmental Code: Decree no. 152/06, Part IV, Title V. Italy -<u>https://www.gazzettaufficiale.it/dettaglio/codici/materiaAmbientale</u>
- ✓ Guidelines for Part 17.2 of the Dutch Environmental Management Act (Wm). The Netherlands
- A. Rebelo, A. Franco, B. Simplício, M. F. Quadrado, S. Batista, V. Reis, A. I. Garcia, R. Ferreira, E. Matos, F. Preces, J. Morgado, M. Pacheco and J. Ferreira, Technical-scientific Index for the Clarification of Illicit Actions on Water Resources. National IMPEL Network, 2023. Portugal - <u>https://apambiente.pt/agua/indice-tecnico-cientifico-esclarecimento-do-illicito-sobre-os-recursos-hidricos</u>
- ✓ Department of the Interior, & Bureau of Land Management, US. (2008a, May 27). BLM Natural Resource Damage Assessment and Restoration Handbook (Rel. 1-1712). 05/27/2008.

https://www.doi.gov/sites/doi.gov/files/migrated/restoration/library/upload/BLM Handbook.pdf

Thanks for your kind attention!

European Union Network for the Implementation and Enforcement of Environmental Law